skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Lai, Yuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Lai, Yuan (Ed.)
    We describe an experimental setup and a currently running experiment for evaluating how physical interactions over time and between individuals affect the spread of epidemics. Our experiment involves the voluntary use of the Safe Blues Android app by participants at The University of Auckland (UoA) City Campus in New Zealand. The app spreads multiple virtual safe virus strands via Bluetooth depending on the physical proximity of the subjects. The evolution of the virtual epidemics is recorded as they spread through the population. The data is presented as a real-time (and historical) dashboard. A simulation model is applied to calibrate strand parameters. Participants’ locations are not recorded, but participants are rewarded based on the duration of participation within a geofenced area, and aggregate participation numbers serve as part of the data. The 2021 experimental data is available as an open-source anonymized dataset, and once the experiment is complete, the remaining data will be made available. This paper outlines the experimental setup, software, subject-recruitment practices, ethical considerations, and dataset description. The paper also highlights current experimental results in view of the lockdown that started in New Zealand at 23:59 on August 17, 2021. The experiment was initially planned in the New Zealand environment, expected to be free of COVID and lockdowns after 2020. However, a COVID Delta strain lockdown shuffled the cards and the experiment is currently extended into 2022. 
    more » « less
  2. Lai, Yuan (Ed.)
    Mistrust is a major barrier to implementing deep learning in healthcare settings. Entrustment could be earned by conveying model certainty, or the probability that a given model output is accurate, but the use of uncertainty estimation for deep learning entrustment is largely unexplored, and there is no consensus regarding optimal methods for quantifying uncertainty. Our purpose is to critically evaluate methods for quantifying uncertainty in deep learning for healthcare applications and propose a conceptual framework for specifying certainty of deep learning predictions. We searched Embase, MEDLINE, and PubMed databases for articles relevant to study objectives, complying with PRISMA guidelines, rated study quality using validated tools, and extracted data according to modified CHARMS criteria. Among 30 included studies, 24 described medical imaging applications. All imaging model architectures used convolutional neural networks or a variation thereof. The predominant method for quantifying uncertainty was Monte Carlo dropout, producing predictions from multiple networks for which different neurons have dropped out and measuring variance across the distribution of resulting predictions. Conformal prediction offered similar strong performance in estimating uncertainty, along with ease of interpretation and application not only to deep learning but also to other machine learning approaches. Among the six articles describing non-imaging applications, model architectures and uncertainty estimation methods were heterogeneous, but predictive performance was generally strong, and uncertainty estimation was effective in comparing modeling methods. Overall, the use of model learning curves to quantify epistemic uncertainty (attributable to model parameters) was sparse. Heterogeneity in reporting methods precluded the performance of a meta-analysis. Uncertainty estimation methods have the potential to identify rare but important misclassifications made by deep learning models and compare modeling methods, which could build patient and clinician trust in deep learning applications in healthcare. Efficient maturation of this field will require standardized guidelines for reporting performance and uncertainty metrics. 
    more » « less